DISPLACEMENT–BASED SEISMIC DESIGN OF SKEW RC BRIDGE PIERS
نویسندگان
چکیده
منابع مشابه
PERFORMANCE-BASED SEISMIC DESIGN OPTIMIZATION FOR MULI-COLUMN RC BRIDGE PIERS, CONSIDERING QUASI-ISOLATION
In this paper an optimization framework is presented for automated performance-based seismic design of bridges consisting of multi-column RC pier substructures. The beneficial effects of fusing components on seismic performance of the quasi-isolated system is duly addressed in analysis and design. The proposed method is based on a two-step structural analysis consisting of a linear modal dynami...
متن کاملSeismic Design of Concrete-Filled Circular Steel Bridge Piers
The adequacy of the existing design provisions for concrete-filled steel pipes subjected to axial forces and flexure is reviewed by comparing the strengths predicted by the CAN/CSA-S16.1-M94, AISC LRFD 1994, and the Eurocode 4 1994 codes and standards against experimental data from a number of investigators. New proposed design equations are then developed, in a format compatible with North Ame...
متن کاملCentrifuge modeling of rocking-isolated inelastic RC bridge piers
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly s...
متن کاملMulti-hazard (blast, Seismic, Tsunamis, Collision) Resistant Bridge Piers
Bridges are often built in locations susceptible to multiple extreme hazards. Meeting some or all of these constraints drives the development of innovative multi-hazard design concepts. This paper presents the results of research conducted to develop and experimentally validate such multi-hazard bridge pier concepts. The first concept is a pier-bent made of concrete filled steel tube columns. F...
متن کاملBi-directional Seismic Analysis and Design of Bridge Steel Truss Piers Allowing a Controlled Rocking Response
4-legged bridge steel truss piers provide support for gravity, transverse, and longitudinal lateral loads of bridges. Allowing a controlled rocking response for seismic resistance of 4-legged truss piers requires the development of design equations considering ground motions in two horizontal directions and vertical excitation. First, the static kinematic and hysteretic bi-directional behavior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Conference on Civil and Architecture Engineering
سال: 2008
ISSN: 2636-4387
DOI: 10.21608/iccae.2008.45505